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ABSTRACT

Vegetation changes on Santa Cruz Island, especially
those due to changes in grazing impacts, have made it use-
ful to prepare a new vegetation map that is complementary
to maps such as reported by Minnich (1980). Through the
combination of field and remote sensing data of Santa Cruz
Island, vegetation maps that emphasize both distinct veg-
etation communities and gradations among them were pro-
duced. The stratified random sampling scheme for field plots
resulted in a data set detailing species dominance in signifi-
cant vegetation communities. TWINSPAN (two-way indi-
cator species analysis) was used to produce a classification
of the 93 field samples yielding eight major classes that were
interpreted to represent: grassland, coastal sage scrub, fen-
nel-invaded, mixed coastal sage scrub/grassland, mixed oak
woodland/island chaparral, island chaparral, Bishop pine
forest, and oak woodland. The ‘mixed’ classes represent the
intergrading of vegetation associations described by Junak
et al. (1995). These field data were used to assess classifica-
tion accuracy for maps depicting locations and extent of the
community types produced from a Bayesian and a map-
guided classifier based on a Landsat image for October 1993.
Spectral mixture analysis was used to map the gradations
within and between the vegetation communities.

Keywords: Spectral mixture analysis, map-guided classifi-
cation, Bayesian classification.

INTRODUCTION

Santa Cruz Island is one of the four Northern Califor-
nia Channel Islands, a westward extension of the Santa
Monica Mountains. Santa Cruz Island is the largest of the
eight California Channel Islands with an area of 249 km². It
is located approximately 40 km off of the coast of southern
California and is separated from the mainland by the Santa
Barbara Channel (Figure 1). With the most rugged topogra-
phy of the northern islands, Santa Cruz Island displays re-
markable physiognomic diversity. Santa Cruz Island sup-
ports the widest variety of indigenous flora (420 species) of
any of the Channel Islands, including seven endemic spe-
cies (Raven 1967). Philbrick and Haller (1977) described
ten plant communities: southern beach and dune, coastal
bluff, coastal-sage scrub, valley and foothill grassland, is-
land chaparral, southern coastal oak woodland, island wood-
land, Bishop pine forest, coastal marsh and southern ripar-
ian woodland. Minnich (1980) reported that oak-woodland,
grassland, chaparral, and coastal sage scrub covered 89%
of the island. Jones et al. (1993) reported percent cover of
11 vegetation classes derived from a digitized vegetation
map based on 1:24,000 color infrared (CIR) aerial photo-
graphs: grasses (52.5%), chaparral (18.4%), barren (9.7%),
riparian (7.2%), coastal sage scrub (5.1%), oaks (4.1%),
pines (1.5%), island oak (0.7%), island ironwoods (0.4%),
woody exotics (0.3%), and coastal bluff (0.1%). Junak et al.
(1995) described 16 plant associations: southern beach and
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Figure 1. Shaded relief
image using the sun angle
and azimuth of the satellite
at the time of data capture
and a DEM.  Plot locations
are indicated by red
markers.



144

Cobb, M. L. and L. A. K. Mertes

dune, valley and foothill grassland, coastal-bluff scrub,
coastal-sage scrub, coyote-brush scrub, island chaparral, is-
land woodland, southern coastal oak woodland, Bishop pine
forest, intertidal and subtidal marine, coastal marsh and es-
tuary, freshwater seeps and springs, vernal ponds, riparian
herbaceous vegetation, mule-fat scrub, southern riparian
woodland.

As a result of decades of extensive overgrazing by
feral sheep and cattle, the island suffered severe environ-
mental degradation (Brumbaugh 1980; Minnich 1980; Hobbs
1980; Van Vuren and Coblentz 1987). Due to this damage,
The Nature Conservancy (TNC), proprietor of the western
90% of Santa Cruz Island, removed approximately 38,000
sheep and 20,000 cattle during the 1980s (Schuyler 1993).
The objectives of this program were to “preserve, protect,
and restore the natural systems, flora and fauna of the is-
land” (Klinger et al. 1994: 341). Unfortunately, one result
of these control efforts was the accelerated invasion of ex-
otic species, especially fennel (Foeniculum vulgare), into
many of the island’s plant communities (Beatty and Licari
1992). TNC not only continues restoration of native floral
communities, but also works to control the expansion of in-
vasive exotic plant species (Brenton and Klinger 1994).

Given Santa Cruz Island’s ecological diversity and
TNC’s current management philosophy to promote restora-
tion, the island is a virtual mecca for many types of research.
Much of this research relies on basic ecological descriptors
for the island, including topography, geology, hydrology, and
climate. Information on the island’s vegetation cover, which
results from the synthesis of ecological factors, is often fun-
damental to many research projects. Surprisingly, no con-
temporary or field-verified vegetation cover map of the is-
land exists. The most recent vegetation map utilized by some
researchers was published by R. Minnich in 1980. This clas-
sification was derived from 1:22,000 CIR photography ac-
quired during July 1970, a period of intense grazing by feral
sheep (Van Vuren 1981). The classification was not com-
prehensively verified in the field; instead “… the primary
role of fieldwork was the characterization of photographic
data” (Minnich 1980: 124). Using laboratory and field tech-
niques, the physiognomic vegetation classes were identified
based on crown structure, height, spread, and other mor-
phological characteristics using aerial photographic inter-
pretation. As experienced by Minnich and other research-
ers, the island’s large size and rugged terrain limits the use
of traditional field techniques for land-cover mapping. If
the spatial scale is appropriate, remotely sensed imagery can
efficiently analyze a large area for vegetation cover. How-
ever, simultaneous collection of traditional field, or ground-
verified, habitat data is crucial to the calibration of the re-
motely sensed imagery. Using geographic information sys-
tems technology, the remote sensing and field data can be
entered into a database using software designed to input,
store, manipulate, analyze, and output spatial information.
In this case, the various pertinent themes of data, such as
satellite imagery, locations of field plots, attributes of the
field plots and elevation contours, can be combined and/or

compared with each other in order to perform the desired
spatial analysis.

One of the major obstacles encountered when attempt-
ing to describe the type, location, and size of areas of simi-
lar land-cover is that geographical information is imprecise,
meaning that the boundaries between different phenomena
are fuzzy or there is heterogeneity within a class (Jensen
1996). Satellite imagery contains pixels with mixtures of
land-cover categories that are not easily classified or labeled.
The mixtures are not strictly limited to land-cover but also
represent topographic variation. Shading of or shadows in a
pixel will dramatically affect the reflectance measured by
the satellite. However, the typical approach to classification
is to determine to which class a pixel belongs. This type of
classification uses a hard classification algorithm which is
based on classical set theory that requires precisely defined
boundaries for which an element either is or is not a mem-
ber of a given set (Jensen 1996). It is understandable to want
to be able to label an entity as one thing or another; such as
a tree that is a pine, oak, cottonwood, or cypress. Yet, in the
case of a pixel in a satellite image, the entity is a portion of
the earth that is covered by a variety of types of natural and
human-made substances. Fuzzy set theory provides a tool
for dealing with the real-world issues of land-cover map-
ping. Fuzzy set theory allows a given pixel to have percent-
ages or portions of membership in different classes, such as
soil, shade, and vegetation.

The objective of this paper is to present the results of
three classification algorithms to determine the most appro-
priate method, or a combination of methods, to employ in
land-cover mapping of rugged terrain. Maps depicting loca-
tions and extent of the primary community types were gen-
erated from two hard classification methods: Bayesian
(Jensen 1986) and an iterative, map-guided (Stoms et al.
1998). Spectral mixture analysis (Smith et al. 1990; Adams
et al. 1994; Mertes et al. 1995) was used to map the
intergrading of the communities as expressed in the
TWINSPAN results.

METHODS

Field Data Collection

During the fall of 1993 through the spring of 1994, 93
vegetation plots were established using a stratified-random
sampling scheme (Figure 1). Nine vegetation cover classes
were surveyed island-wide, including the eight physiogno-
mic types mapped by Minnich (1980): grassland, island chap-
arral, coastal sage scrub, woodlands, Bishop pine forest, ri-
parian, barren, and woody exotics. The vegetation cover class
of fennel grassland was also included due to the recent inva-
sion of Foeniculum vulgare into many of the shrub commu-
nities (Beatty and Licari 1992). The island’s vegetation types
were first stratified using interpretations of 1991 CIR pho-
tos (scale 1:24,000). Then field plots were randomly located
within the identified stratified stands. The plots measured
60 by 60 m in order to include sufficient areal coverage for
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ground verification of remotely sensed imagery with a spa-
tial resolution of 30 by 30 m. Each plot’s location was re-
corded on the 1991 CIR photos and the following attributes
were measured in the field: 1) slope and aspect, 2) dominant
species, 3) percent cover of dominant species, 4) percent
cover of litter, exposed litter and soil, and 5) soil color. The
flora referenced during field data collection was The Jepson
Manual: Higher plants of California (Hickman 1993). The
emphasis of this paper will be on the presence/absence and
percent cover of dominant species. For further details on
the field data collected, refer to Cobb (1999).

Field Data Analysis

All of the field data were entered into a spreadsheet in
preparation for both integration into the Geographical In-
formation System (GIS) database and the species and sample
ordination analysis. The locations of the plots, represented
as points in the database, were screen-digitized using USGS
digital data (Digital Line Graph files of hydrography and
hypsography) to transfer their locations from 1991 CIR pho-
tos into the GIS database. The attributes of the plots were
imported into the GIS, appended to the field plot location
data layer. Elevation values were calculated by overlaying
the points on a Triangulated Irregular Network (TIN) of Santa
Cruz Island. The TIN was derived from a mosaic of USGS
Digital Elevation Models (DEM) which have a spatial reso-
lution of 30 m by 30 m. Next, the attributes were exported
from the GIS database and formatted for import into a FOR-
TRAN based vegetation analysis program, TWINSPAN.

Hill (1979) describes TWINSPAN as a two-way indi-
cator species analysis used to produce a classification of the
field samples in two definitions of space (species in species
space and species in sample space) using both frequency
and presence/absence data. TWINSPAN is a polythetic di-
visive classification technique that analyzes the presence/
absence data of dominant species within each sample (or
plot). The program employs a two-way ordination technique
that groups species with other similar species and the same
with the samples. Among the results listed are the differen-
tial species which are those that have distinct ecological pref-
erences and can be used to identify particular environmen-
tal conditions. TWINSPAN is designed to construct ordered
two-way tables identifying the differential species using re-
ciprocal averaging of samples. The program performed a
dichotomized ordination analysis of the samples and quali-
tatively identifies the differential species on each side of a
crude dichotomy. Using these differential species, the ordi-
nation was further divided to achieve a user-defined level of
dichotomy. Although indicator species analysis is not the
focus of TWINSPAN, indicator ordination or a simplified
ordination based upon differential species was performed.
The main result of TWINSPAN is a table of the samples
classified into groups, or classes, to which labels are attached.
The number of these classes depends on the number of
iterations requested by the user. In this case, data for 85 plots
were analyzed (the riparian, barren and woody exotic plots
were removed for the final analysis because they were

extreme outliers) with three iterations within TWINSPAN,
and eight final classes resulted.

Image Analysis

A Landsat 5 Thematic Mapper (TM) scene of central
California dated October 20, 1993, was selected based on
the absence of cloud cover and coincidence with collection
of field data. Elements of an image processing software pack-
age, Image Processing Workbench (Frew 1990) and spatial
analysis tools embedded in ARC/INFO®, a GIS software
package (Environmental Systems Research Institute,
Redlands, California) were employed to generate a land-
cover map of Santa Cruz Island. Following pre-processing
of the image, three classification methods were applied to
the data: 1) Bayesian classification, 2) map-guided classifi-
cation, and 3) spectral mixture analysis. Then two post-pro-
cessing procedures were performed to complete the three
classifications. Lastly, the accuracy of the three methods was
assessed using both a quantitative and a qualitative approach.

Image pre-processing begins with geometric rectifi-
cation, the process by which the “geometry of an image area
is made planimetric” (Jensen 1986:103). First, the image
coordinates were translated to real-world coordinates using
20 ground control points and United States Geological Sur-
vey (USGS) Digital Line Graph files as the basemap. Next,
intensity interpolation was performed to calculate each
pixel’s digital number (DN) at the new spatial location. The
nearest-neighbor interpolation method, where the DN of the
pixel closest to the original pixel location is assigned to the
pixel at its new spatial location, was chosen because this
method does not alter the original DNs (Jensen 1986). Lastly,
the images were corrected for atmospheric effects through
the minimum DN subtraction method to account for path
radiance (Jensen 1986).

The Bayesian classification is a supervised method
based on maximum likelihood statistics that yields a hard
classification. Using the field data, training sites were iden-
tified and used as input to the statistical portion of the su-
pervised classification process (Richards 1986). These sites
provided sample DNs, or relative values of reflectance, on
which the classification was based. The statistics generated
from the training sites set the rules for the maximum likeli-
hood classes. To determine the best bands, or wavelengths,
of the satellite imagery for use in the classification, a diver-
gence operation was performed (Jensen 1986). Given the
six possible bands, the four most informative bands (TM
bands 3, 4, 5 and 7) were chosen for the analysis. The Baye-
sian classification method analyzes covariance values, user-
defined a priori probabilities as weights for each class, and
chi-square values as classification thresholds (Jensen 1986).
This approach weeds out atypical values and highlights pre-
viously unidentified spectral classes, which otherwise would
simply have been assigned to the ‘most similar class’ in a
standard Boolean classification (Jensen 1986).

The map-guided classification (MGC) method was
developed by the Institute for Computational Earth System
Science at the University of California at Santa Barbara
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(Stoms et al. 1998). MGC is an iterative procedure consist-
ing of two steps using functions within the GRID module of
ARC/INFO®. The first step is to perform unsupervised clus-
tering on the image with ISOCLUSTER. Next, the
MLCLASSIFY function assigns unclassified pixels to the
clusters determined with ISOCLUSTER. MGC requires an
input map to be used as training data. As described in Stoms
et al. (1998:14):

“The information classes in the input map are com-
pared with the spectral clusters, and the spectral
cluster with the highest level of association (i.e.,
the highest ratio of pixels in a cluster and informa-
tion class combination relative to the sum of pixels
in the cluster in all classes) is assigned to its corre-
sponding information class. The algorithm then
removes pixels in that spectral cluster from the data
set and repeats the two-step procedure with the re-
maining data. Processing continues iteratively un-
til all pixels have been assigned to [a class] that
best matches their spectral signature or until a stop-
ping rule is invoked.”

In this case, the training sites used in the Bayesian classifi-
cation were used as the input map data and the program
performed 17 iterations.

Given the natural tendency of vegetation classes to
lack distinct borders, vegetation communities commonly mix
or overlap resulting in gradients. Based on the theory that
pixels tend to be inherently heterogeneous, standard classi-
fication techniques do not accurately represent reality (Jensen
1986). The fact that pixels contain varying proportions of
vegetation, soil, and topography complicates attempts to
assign pixels into predefined vegetation community classes.
Spectral mixture analysis (SMA) is based on defining
endmembers that are represented by spectral data for a ho-
mogeneous pixel of, for example, vegetation, shade, and soil
(Smith et al. 1990; Mertes et al. 1993; Adams et al. 1994).
From the results of the mixing model with the image spec-
tral endmembers, the amount that each image endmember
contributed to the composition of each pixel was computed
as a fraction value. The fraction images were combined and
the patterns of fraction combinations were interpreted to
represent the different vegetation categories. Using additive
color combinations as a guide, the final SMA map retains
information on both the locations of distinct classes as well
as the gradations among them.

A traditional approach to the assessment of image clas-
sification accuracy is the quantitative comparison of test site
data to the classified values in terms of correct or incorrect.
This assessment is typically expressed by calculating the
mapping accuracy (MA). The MA is the percentage of the
number of pixels classified correctly over the summation of
the number of pixels classified correctly and classified

incorrectly by both errors of commission and omission
(Jensen 1986; Richards 1986):

The data from the training and test sites were used to
calculate the MA for the hard classification methods. In an
attempt to evaluate the accuracy of the hard classifications
within a descriptive context, a fuzzy sets approach was ap-
plied to the 93 field samples’ observed vegetation class ver-
sus their assigned values from the hard classification meth-
ods. Fuzzy accuracy assessment “recognizes the inherent
ambiguity, or fuzziness, of land-cover classes” (Stoms et al.
1998:835). This method replaces the traditional labels of
correct or incorrect categories with “linguistic values” (Gopal
and Woodcock 1994:183), such as, absolutely right, good
answer, reasonable or acceptable, understandable but wrong,
and absolutely wrong (Gopal and Woodcock 1994; Stoms
et al. 1998).

Lastly, the total areal coverage for each vegetation
community was calculated for the Bayesian and MGC veg-
etation maps. To calculate correctly the coverage area of a
given land-cover class from the image data, it is necessary
to account for the difference between the apparent pixel area
(1141 m²) versus the true area as it varies with slope. There-
fore, for each vegetation category total true area (TTA) was
calculated according to:

RESULTS

Field Data Results

The field data analysis using TWINSPAN resulted in
eight major classes which were interpreted as representing
the following communities: grassland, mixed coastal sage
scrub, fennel-invaded, mixed coastal sage scrub/grassland,
mixed oak woodland/island chaparral communities, island
chaparral, Bishop pine forest, and oak woodland (Table 1).
The classes labeled as ‘mixed’ appear to represent inter-
grades described by Junak et al. (1995). The dominant spe-
cies associated with each vegetation community type are
listed in Table 2.

The following discussion includes a description of each
TWINSPAN class and the logic behind the labeling pro-
cess. Class 000 was labeled grassland, as all 12 samples in
the group were field plots of grassland. There were no indi-
cator species for this class; however, the preferential spe-
cies included: Atriplex spp., Brassica nigra, Bromus mollis,
Dichelostemma capitatum, Erodium spp., Lamarckia spp.,
and Foeniculum vulgare. Class 001 was labeled mixed
coastal sage scrub/grassland, as the majority of the samples



147

Mapping Gradations Among Vegetation Communities

Plot Name
Bayesian 

Class
Bayesian 

FAA
MGC 
Class

MGC 
FAA

TWINSPAN 
Class TWINSPAN Description

Table 1.  TWINSPAN groupings and fuzzy accuracy assessment values for field plots.  Abbreviations for the
vegetation type:  CH = island chaparral, CS = coastal sage scrub, F = fennel-invaded, G = grassland,
OW = oak woodland, and P = Bishop pine forest.  The fuzzy accuracy assessment (FAA) values translate as
follows: 1 = absolutely right, 2 = good answer, 3 = reasonable, 4 = understandable, but wrong, and
5 = absolutely wrong.

CH-01 CH 1 CH 1 101 island chaparral

CH-02 CH 1 CH 1 101 island chaparral

CH-03 P 4 CH 1 101 island chaparral

CH-04 CH 1 CH 1 101 island chaparral

CH-05 OW 2 CH 1 100 mixed oak woodland/chaparral

CH-06 OW 3 CH 1 101 island chaparral

CH-07 CH 1 P 4 101 island chaparral

CH-08 CH 1 CH 1 101 island chaparral

CH-09 OW 3 OW 3 101 island chaparral

CH-10 CH 1 P 5 100 mixed oak woodland/chaparral

CH-11 P 5 CH 1 100 mixed oak woodland/chaparral

CH-12 CS 5 G 5 100 mixed oak woodland/chaparral

CH-13 P 4 P 4 101 island chaparral

CH-14 CH 1 CH 1 100 mixed oak woodland/chaparral

CH-15 CH 1 CH 1 110 Bishop pine forest

CS-01 CS 1 OW 5 10 fennel-invaded

CS-02 G 2 G 2 11 mixed coastal sage

CS-03 CH 5 CS 1 10 fennel-invaded

CS-04 G 2 G 2 1 mixed coastal sage/grassland

CS-05 G 2 G 2 11 mixed coastal sage/grassland

CS-06 CH 5 F 3 1 mixed coastal sage/grassland

CS-07 OW 4 none 5 1 mixed coastal sage/grassland

CS-08 CS 1 OW 4 1 mixed coastal sage/grassland

CS-09 CS 1 G 2 10 fennel-invaded

CS-10 G 2 G 2 11 mixed coastal sage

CS-11 6 3 F 3 11 mixed coastal sage

CS-12 OW 4 F 3 11 mixed coastal sage

CS-13 G 2 G 2 11 mixed coastal sage

CS-14 CH 5 CH 5 11 mixed coastal sage

F-01 6 1 F 1 11 mixed coastal sage

F-02 6 1 G 2 10 fennel-invaded

F-03 6 1 F 1 10 fennel-invaded

F-04 none 5 G 1 10 fennel-invaded

F-05 CH 5 CH 5 10 fennel-invaded

F-06 none 5 CH 5 10 fennel-invaded

F-07 CH 5 F 1 10 fennel-invaded

F-08 G 2 G 2 10 fennel-invaded

F-09 CH 5 F 1 10 fennel-invaded

G-01 none 5 CS 2 0 grasslands

G-02 CS 2 OW 4 10 fennel-invaded

G-03 G 1 G 1 10 fennel-invaded

G-05 CH 5 CH 5 11 mixed coastal sage

G-06 OW 4 F 2 0 grasslands

G-07 P 4 P 4 0 grasslands
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Table 1. Continued.

                          Bayesian          Bayesian            MGC         MGC     TWINSPAN

G-08 OW 4 CS 2 0              grasslands

G-09 G 1 F 2 0              grasslands

G-10 none 5 G 1 11              mixed coastal sage

G-11 CH 5 F 2 10              fennel-invaded

G-12 OW 2 CH 5 1                 mixed coastal sage/grassland

G-13 G 1 G 1 0            grasslands

G-14 CS 2 OW 4 0            grasslands

G-15 CS 2 CS 2 0             grasslands

G-16 CH 5 CH 5 0             grasslands

G-17 CH 5 CS 2 1                  mixed coastal sage/grassland

G-18 none 5 G 1 0         grasslands

G-19 G 1 G 1 0         grasslands

G-20 none 5 OW 4 0          grasslands

OW-01 CH 4 P 5 111        oak woodland

OW-02 OW 1 CH 4 111        oak woodland

OW-03 CH 2 OW 1 100                   mixed oak woodland/chaparral

OW-04 6 4 OW 1 1              mixed coastal sage

OW-05 CH 2 CH 2 101              island chaparral

OW-06 none 5 OW 1 100                      mixed oak woodland/chaparral

OW-07 CH 2 CH 2 100                      mixed oak woodland/chaparral

OW-08 CH 2 CH 2 100                      mixed oak woodland/chaparral

OW-09 G 4 G 4 10                 fennel-invaded

OW-10 P 5 CH 5 10                 fennel-invaded

OW-11 CH 3 CH 3 11               mixed coastal sage

OW-12 CH 3 CH 3 111           oak woodland

OW-13 CH 3 CH 3 111           oak woodland

OW-14 CS 4 OW 1 100                 mixed oak woodland/chaparral

OW-15 CS 3 OW 1 1              mixed coastal sage

OW-16 CH 2 CH 2 100                 mixed oak woodland/chaparral

OW-17 CS 5 OW 1 111          oak woodland

P-01 OW 5 OW 5 110       Bishop pine forest

P-02 CS 5 OW 5 110      Bishop pine forest

P-03 CH 3 CH 3 110       Bishop pine forest

P-04 CH 3 P 1 110      Bishop pine forest

P-05 CH 3 CH 3 110      Bishop pine forest

P-06 CH 3 CH 3 110      Bishop pine forest

P-07 CH 3 CH 3 110      Bishop pine forest

P-08 P 1 P 1 110      Bishop pine forest

P-09 none 5 OW 5 110      Bishop pine forest

P-10 none 5 OW 5 110      Bishop pine forest

P-11 OW 5 none 5 110      Bishop pine forest

Plot Name          Class                  FAA                Class           FAA             Class              TWINSPAN Description

were identified as coastal sage scrub in the field. This group
of samples consists of four coastal sage scrub, three grass-
land, and two oak woodland plots. Class 001 had two indi-
cator species that helped to distinguish it from Class 000:
Bromus rubens and Quercus agrifolia. These two species
are typically dominant species of grassland and oak wood-
lands plots, respectively (Junak et al. 1995). The preferen-
tial species included Artemisia californica, Baccharis

pilularis, Bromus rubens, Eriogonum arborescens,
Gnaphalium spp., Lotus scoparius, Opuntia spp., Quercus
agrifolia, and Rhus integrifolia. Species that held no prefer-
ence for either class were: Avena spp., Bromus diandrus,
Lolium spp., Nassella spp., and Hordeum spp. Class 010
was labeled fennel-invaded due to the overwhelming
number of samples in the group that were identified in the
field as fennel grasslands. This class consisted of eight
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Table 2.  Dominant species typically found in each community
type and the related TWINSPAN code(s) for each community
type.

Grassland   000 and 001
Atriplex semibaccata Brassica nigra

Avena  spp. Bromus diandrus

Baccharis  glutinosa Bromus mollis

Baccharis pilularis Lolium spp.

O ak woodland  111 and 100
Adenostoma fasciculatum Heteromeles arbutifolia

Arctostaphylos spp. Quercus agrifolia

Ceanothus arboreus Quercus dumosa

Cercocarpus betuloides

Island chaparral  101 and 100
Adenostoma fasciculatum Heteromeles arbutifolia

Arctostaphylos  spp. Quercus agrifolia

Ceanothus arboreus Quercus dumosa

Ceanothus megacarpus Rhus integrifolia

Cercocarpus betuloides Rhus ovata

Eriogonum arborescens

Coastal Sage Scrub  001 and 011
Artemisia californica Eriogonum arborescens

Avena  spp. Eriogonum grande

Baccharis pilularis Haplopappus squarrosus

Bromus diandrus Lotus scoparius

Bromus mollis Rhus integrifolia

Encelia californica Salvia  spp.

Bishop Pine  Forest  110
Arctostaphylos spp. Quercus agrifolia

Pinus muricata

Fennel-invaded  010
Artemisia californica Bromus mollis

Avena  spp. Eriogonum arborescens

Baccharis pilularis Eriogonum grande

Bromus diandrus Foeniculum vulgare

Riparian  not included in the analysis 
Avena  spp. Eriogonum grande

Baccharis glutinosa Hordeum californica

Baccharis pilularis Mimulus  spp.

Eriogonum arborescens Salix spp.

Woody Exotics  not included in the analysis
Eucalyptus globulus

fennel grassland, three coastal sage scrub, three grassland,
and two oak woodland plots. Along with Foeniculum
vulgare, the indicator species for the class included
Eriogonum grande, Hordeum spp., and Artemisia
californica, which are either typical dominant species of
grassland or coastal sage scrub associations (Junak et al.
1995). The preferential species included: Baccharis pilularis,
Bromus mollis, Eriogonum grande, Hordeum spp., and
Marrubium vulgare. Class 011 was labeled mixed coastal
sage scrub, as the 11 samples were a mixture of seven coastal
sage scrub, two grassland, one oak woodland, and one

fennel grassland. The indicator species were Artemisia
californica and Eriogonum arborescens, which Junak et al.
(1995) identify as dominant species of coastal sage scrub.
The preferential species included Artemisia californica,
Eriogonum arborescens, Quercus dumosa, and Rhus
integrifolia. Species that held no preference for either class
were Avena spp. and Bromus diandrus. Class 100 was la-
beled mixed oak woodland/island chaparral, as the 11 plots
were almost evenly split between the two classes (six oak
woodland and five island chaparral). Two species of Bromus
were indicator species: Bromus mollis and Bromus diandrus.
The occurrence of these grasses is indicative of oak wood-
lands’ understory; however, this is not true of typical chap-
arral plots, which tend to lack any understory (Holland and
Keil 1990). Preferential species in this mixed oak wood-
land/chaparral class included: Avena spp., Bromus diandrus,
Bromus mollis, Ceanothus arboreus, Quercus agrifolia, and
Rhus integrifolia. Class 101 was labeled island chaparral,
as the ten plots were dominated by nine plots identified as
island chaparral in the field and with one oak woodland plot.
This class did not have any indicator species; however, the
preferential species included: Ceanothus arborescens,
Dodecatheon clevelandii, Eriogonum grande, Erodium spp.,
Hordeum spp., Pinus muricata, and Solanum spp.. Species
that held no preference for either class were: Adenostoma
fasciculatum, Arctostaphylos spp., Bromus rubens,
Cercocarpus betuloides, Gnaphalium spp., Heteromeles
arbutifolia, Lotus scoparius, Mimulus spp., and Quercus
dumosa. Class 110 was labeled Bishop pine forest, as all 11
pine forest field plots fell into this group, along with one
chaparral plot. Pinus muricata and Mimulus spp. were the
indicator species while the preferential species included: Arc-
tostaphylos spp., Baccharis pilularis, Ceanothus arboreus,
Comarostaphylis diversifolia, Lotus scoparius, Mimulus
spp., Pinus muricata and Rhus integrifolia. Class 111 was
labeled oak woodland, as all samples were identified as oak
woodland plots in the field. There were no indicator spe-
cies; however, the preferential species included: Bromus
diandrus, Claytonia perfoliata, Encelia californica,
Foeniculum vulgare, Marah macrocarpus, Marrubium
vulgare, and Solanum spp. The non-preferential species were
Heteromeles arborescens and Quercus agrifolia.

Image Analysis Results

The eight vegetation classes from the TWINSPAN
results were used as a guide in the analysis of the remote
sensing data. The Bayesian (Figure 2a) and map-guided (Fig-
ure 2b) classification methodologies produced maps
depicting the locations and extent of primary community
types. Table 3 contains the error or confusion matrices for
the classification results which were used to calculate the
MA for the Bayesian and the map-guided classifications,
respectively. The MA for the Bayesian method was 65.3%
for training sites and 15.7% for test sites. The MA for the
map-guided classification was 40.9% for training sites and
31.5% for test sites.
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Figure 2a.  Bayesian classification results (white = grassland, red = oak woodland, green = Island
chaparral, blue = coastal sage scrub, cyan = Bishop pine forest, magenta = fennel-invaded).

Figure 2b. Map-guided classification results (white = grassland, red = oak woodland, green = Island
chaparral, blue = coastal sage scrub, cyan = Bishop pine forest, magenta = fennel-invaded).

In order to analyze the results of the hard classifica-
tions methods, 85 of the field samples were analyzed using
the fuzzy accuracy assessment (FAA) method (Table 1).
Forty-one percent of the plots were in the ‘best’ class cat-
egory (i.e., ‘absolutely right’ or ‘good answer’; FAA values
1 and 2, respectively) for the Bayesian method compared to
56% for MGC. These plots were completely consistent with
the results from the image classification schemes and the
TWINSPAN analysis. For example, an island chaparral plot
(CH-05) was classified as oak woodland in the Bayesian
method and in the TWINSPAN mixed oak woodland/chap-
arral class; thus, it was assigned a FAA value of 2 or ‘good
answer’. Another 14% were categorized as ‘reasonable’
(FAA value 3) values for the Bayesian method compared to
13% for the MGC method. Examples for this category are
two Bishop pine forest plots (P-06 and P-07) that were clas-
sified as island chaparral by both methods; however, field
data document the presence of dominant species which fre-
quently occur in both the island chaparral and Bishop pine
forest communities (i.e., Arctostaphylos spp. and Quercus

agrifolia). Another example
is coastal sage scrub plot
CS-11 which was classified
as fennel-invaded by both
classifiers and as mixed
coastal sage/grassland by
the TWINSPAN analysis;
thus, the label of reasonable
was assigned due to the de-
gree of mixing these two
vegetation communities.
Eleven plots (13%) were la-
beled ‘understandable, but
wrong’ (FAA value 4) for
the Bayesian method and 9
plots (11%) for MGC. Plot
OW-14 was assigned a FAA
value of 4, as it was classi-
fied as a mixed oak wood-
land/chaparral plot by
TWINSPAN and as coastal
sage scrub by the Bayesian
method. Although some oak
woodland plots were ana-
lyzed by TWINSPAN to
‘mix’ with coastal sage
scrub, the species within this
plot were not indicative of
the mixed coastal sage class.
Hence, the Bayesian classi-
fication of coastal sage scrub
for this plot was understand-
able, but not correct.
Twenty-six plots (34%),
nine (11%) of which were
unable to be classified in the
Bayesian method, were la-

beled ‘absolutely wrong,’ representing values completely in-
consistent with field observations. Within the same category
there were seventeen plots (20%) , two (2%) of which were
unclassified in the map-guided classification. Thus, 54% of
the field plots were at least partially consistent (i.e., ‘abso-
lutely right’, ‘good answer’, or ‘reasonable’) for the Baye-
sian classification method and 69% for MGC.

Even though the accuracies as assessed by both clas-
sical and fuzzy methods appear to be low, it is of interest to
compare the total true area covered by each vegetation class
of the two hard classification methods. Of the reported total
area for Santa Cruz Island (249 km²), the Bayesian
classification yielded the following percent cover results:
grassland = 16.7% (41.7 km²), oak woodland = 23.9% (59.4
km²), island chaparral = 21.8% (54.2 km²), coastal sage scrub
= 7.8% (19.4 km²), Bishop pine forest = 12.0% (29.8 km²),
and fennel-invaded = 5.6% (14.0 km²). In comparison, the
MGC yielded the following percent cover results: grassland
= 16.7% (41.6 km²), oak woodland = 18.2% (45.4 km²),
island chaparral = 24.3% (60.5 km²), coastal sage scrub
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Table 3. Confusion matrices for Bayesian and map-guided classifications.
Correct Omission Commission MA

Bayesian Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total % % % %

Grassland 266.0 7.0 0.0 4.0 0.0 0.0 277.0 96.0 4.0 13.7 84.4

Oak Woodland 8.0 27.0 26.0 8.0 3.0 3.0 84.0 32.1 67.9 48.8 21.6

Training Island Chaparral 2.0 25.0 293.0 8.0 13.0 13.0 369.0 79.4 20.6 17.3 67.7

Sites Coastal Sage Scrub 13.0 6.0 4.0 73.0 0.0 1.0 103.0 70.9 29.1 22.3 57.9

Bishop Pine Forest 0.0 2.0 30.0 0.0 142.0 2.0 180.0 78.9 21.1 8.9 72.4

Fennel-invaded 15.0 1.0 4.0 3.0 0.0 52.0 92.0 56.5 43.5 20.7 46.8

77.2 22.8 18.2 65.3

Correct Omission Commission MA

Bayesian Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total % % % %

Grassland 29.0 16.0 0.0 0.0 1.0 9.0 96.0 30.2 69.8 35.4 84.4

Oak Woodland 2.0 12.0 74.0 0.0 13.0 7.0 112.0 10.7 89.3 42.9 21.6

Test Island Chaparral 0.0 2.0 129.0 1.0 66.0 0.0 201.0 64.2 35.8 160.2 67.7

Sites Coastal Sage Scrub 27.0 27.0 6.0 36.0 0.0 2.0 128.0 28.1 71.9 2.3 57.9

Bishop Pine Forest 0.0 1.0 205.0 2.0 3.0 0.0 220.0 1.4 98.6 67.3 72.4

Fennel-invaded 5.0 2.0 37.0 0.0 68.0 26.0 169.0 15.4 84.6 10.7 46.8

25.4 74.6 61.9 15.7

Correct Omission Commission MA

Map-guided Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total % % % %

Grassland 245.0 15.0 1.0 2.0 0.0 14.0 277.0 88.4 20.2 11.6 73.6

Oak Woodland 8.0 14.0 23.0 17.0 8.0 10.0 84.0 16.7 122.6 83.3 7.5

Training Island Chaparral 6.0 13.0 263.0 4.0 50.0 17.0 369.0 71.3 33.1 28.7 53.6

Sites Coastal Sage Scrub 18.0 73.0 3.0 1.0 0.0 5.0 103.0 1.0 23.3 99.0 0.8

Bishop Pine Forest 0.0 1.0 90.0 1.0 68.0 20.0 180.0 37.8 39.4 62.2 27.1

Fennel-invaded 24.0 1.0 5.0 0.0 13.0 42.0 92.0 45.7 71.7 54.3 26.6

57.3 40.0 42.7 40.9

Correct Omission Commission MA

Map-guided Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total % % % %

Grassland 29.0 16.0 0.0 0.0 1.0 9.0 96.0 72.9 44.8 25.0 51.1

Oak Woodland 2.0 12.0 74.0 0.0 13.0 7.0 112.0 1.8 71.4 92.0 1.1

Test Island Chaparral 0.0 2.0 129.0 1.0 66.0 0.0 201.0 77.6 118.4 20.4 35.9

Sites Coastal Sage Scrub 27.0 27.0 6.0 36.0 0.0 2.0 128.0 3.1 8.6 89.8 3.1

Bishop Pine Forest 0.0 1.0 205.0 2.0 3.0 0.0 220.0 35.9 20.5 59.5 31.0

Fennel-invaded 5.0 2.0 37.0 0.0 68.0 26.0 169.0 68.6 28.4 30.2 54.0

46.1 74.6 50.2 31.5

vegetation, and 0.5 shade. In the case of island chaparral,
the fraction combination was approximately 0.1 soil, 0.5 veg-
etation, and 0.4 shade. In contrast, during the fall season the
grasslands are dominated by senesced or dry grass and char-
acteristically have effectively no self-shading. The spectral
signature of senesced or non-photosynthetic vegetation is
similar to barren areas (e.g., Jensen 1986: 159, Figure 7-
31). Therefore, the fraction combination for the grassland
plot is approximately 1.0 soil, 0.0 vegetation, and 0.0 shade.
To aid in the interpretation of both Figure 3 and the vegeta-
tion map shown in Figure 4, the mixing of the fractions can
also be interpreted with respect to the mixing of additive
primary colors (i.e., red = 100% bright soil, green = 100%
healthy vegetation, and blue = 100% deep shade). For ex-
ample, the dark green-blue color (mixture of vegetation and
shade) representing an island chaparral plot is in sharp
contrast to the red color (100% soil) of the grasslands and
barren areas.

= 4.5% (11.2 km²), Bishop pine forest = 5.1% (12.7 km²),
and fennel-invaded = 15.1% (37.5 km²).

Due to the low accuracies and inconsistencies between
the Bayesian classification and MGC and to portray the
TWINSPAN results spatially, spectral mixture analysis was
used as an alternative method to map the intergrading of the
communities. Figure 3 is a ternary plot of a field sample for
each TWINSPAN class within the context of the mixing
model fractions. Interpretation of the ternary plot requires
consideration of how the components (soil, vegetation, and
shade) would physically mix in the landscape. Although
island chaparral is more open compared to the mainland com-
munities (Holland and Keil 1990; Junak et al. 1995), for the
sake of explanation we refer to the characteristics of typical
chaparral. Chaparral has a dense, complex crown resulting
in a high level of self shading while the dense canopy cover
prevents an aerial view of soil. The reasonable fraction com-
bination for typical chaparral would be 0.0 soil, 0.5
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Figure 4. Color composite image of the soil (red), vegetation (green) and shade (blue) fraction
images from the spectral mixture analysis.

DISCUSSION AND CONCLUSIONS

Through the combination of field and remote sensing
data of Santa Cruz Island, vegetation maps that emphasize
both distinct vegetation communities and gradations among
them were produced. TWINSPAN (two-way indicator spe-
cies analysis) was used to produce a classification of 93 field
samples yielding eight major classes that are interpreted to
represent: grassland, coastal sage scrub, fennel-invaded,
mixed coastal sage scrub/grassland, mixed oak woodland/
island chaparral, island chaparral, Bishop pine forest, and
oak woodland. These field data were used to assess classifi-
cation accuracy for maps depicting locations and extent of
the primary community types produced from a Bayesian and
an iterative clustering classifier. Spectral mixture analysis
was used to map the gradations within and between the
vegetation communities on the island.

Results from both hard classification approaches were
similar to the 89% cover of the dominant communities (oak-
woodland, grassland, chaparral, and coastal sage scrub)

reported by Minnich (1980). Combining the areal extent of
the grassland, coastal sage scrub, fennel-invaded, coastal
sage scrub, oak woodland, island chaparral and Bishop pine
forest communities, the Bayesian classification yielded 88%
cover and the map-guided classification yielded 84% cover.
The low accuracies and inconsistent areal extents of the
Bayesian and map-guided classification methods are not sur-
prising in that a hard classification algorithm is based on
classical set theory requiring pixels to be assigned to one or
another class and these assignments are typically evaluated
on a correct/incorrect basis. In addition, remote sensing data
is not typically homogenous and the lack of distinct bound-
aries among vegetation communities only increases the dif-
ficulty of accurately mapping land-cover.

It is not entirely surprising that a fuzzy accuracy as-
sessment of the Bayesian and map-guided methods yielded
only slightly improved results. However, the spectral mix-
ture analysis, with the assumption of heterogeneous data,
proves to be much more conducive to mapping naturally
occurring phenomena. In terms of practical use of the SMA
map in the field, an understanding of the premise of the
method must be attained.

The following is a discussion of the eight TWINSPAN
classes with respect to the SMA results. The TWINSPAN
and SMA results were generally analogous for the grass-
land, fennel-invaded and coastal sage scrub field data. In
fact, in the case of the coastal sage scrub classes, the SMA
results proved to be more useful than those of TWINSPAN.
Beginning with the grassland class, as one would expect from
image data collected during the fall season, the grassland
plot had little or no shade and was absent of healthy vegeta-
tion, and therefore yields a reddish-orange color on the SMA
map. In terms of the TWINSPAN analysis, this is a rela-
tively distinctive class from the other vegetation communi-
ties aside from barren areas. In the case of the fennel-in-
vaded sample plot, the purple-bluish color from the SMA
map corresponds well with the TWINSPAN results as the
class has a distinct fraction combination (approximately 0.8
soil, 0.0 vegetation, 0.2 shade) from the other classes. Fen-

nel (Foeniculum vulgare)
flowers during the months
of February through June
and is a perennial herb mea-
suring 1 to 2 m tall (Junak
et al. 1995:80) resulting in
a lack of healthy vegetation
in fall and a modest degree
of self-shading. The coastal
sage scrub and mixed
coastal sage scrub/grassland
classes are yellowish-green
colors on the SMA map. As
yellow results from the ad-
ditive mixture of red and
green (Paine 1981:228,
Plate 1), this yellowish-
green color indicates a

Figure 3.  Ternary plot of fraction images from spectral mixture
analysis.
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higher fraction of healthy vegetation (0.3) along with the
high fraction of soil (0.5) present in the grassland sample
and some shade (0.2). Perhaps due to the fact that the
TWINSPAN analysis is limited to the input data of pres-
ence/absence and relative dominance of species within the
field plots, samples labeled as coastal sage scrub in the field
were not easily distinguished from the grassland and fennel-
invaded plots. However, the ternary plot illustrates the abil-
ity to identify the differences between grassland, fennel-in-
vaded and coastal sage scrub communities through SMA.

As indicated by the mixed results from the
TWINSPAN analysis of the oak woodland, island chaparral
and Bishop pine forest field data, the SMA results were more
subtle than for the grassland, fennel-invaded and coastal sage
scrub classes. Although the fraction combinations for the
woody classes are relatively distinguishable, their colors from
the SMA map are similar, which creates difficulty in visual
interpretation. In general, the variations in the amount of
shade and vegetation for each of the classes coincide with
field observations. For example, the fraction combination
of 0.3 soil, 0.2 vegetation and 0.5 shade for the oak wood-
land class is consistent with a community which contains
open space (soil), sparse vegetation and typically occurring
on “north-facing slopes, [in] ravines, and [in] narrow can-
yons” (Junak et al. 1995:20) which explains the high frac-
tion of shade. In the case of the island chaparral, the fraction
combination of 0.1 soil, 0.5 vegetation and 0.4 shade is con-
sistent with a more open woodland than mainland chaparral
(Holland and Keil 1990) occurring on north-facing slopes.
As the Bishop pine forest populations are recovering from
the effects of grazing of feral sheep, one of the three popula-
tions on the island (Pelican Bay) is described as “primarily
open, with scattered groves of mature pine” (Wehtje
1994:331) and another (Christy Pines) has a rich understory
consisting of species such as Adenostoma fasciculatum,
Arctostaphylos insularis, Ceanothus arboreus, which are
dominants of the island chaparral community. Thus, the frac-
tion combination of 0.15 soil, 0.3 vegetation and 0.55 shade
can be construed as consistent with the Christy Pines popu-
lation, but not as much with the more open, Pelican Bay
population. Hence, we see the mixtures of the communities
in the TWINSPAN results and the similarities in their colors
on the SMA map.

In conclusion, although the SMA map does not yield
measurements of areal extent for each vegetation commu-
nity on the island, it does serve as a guide to the type of
land-cover likely to be found at any location. Through the
analysis of combinations of proportions of soil, vegetation
and shade pixel by pixel, the distinct and subtle differences
amongst and between the various vegetation communities
are illuminated.
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